-
sklearn.metrics.auc(x, y, reorder=False)
[source] -
Compute Area Under the Curve (AUC) using the trapezoidal rule
This is a general function, given points on a curve. For computing the area under the ROC-curve, see
roc_auc_score
.Parameters: x : array, shape = [n]
x coordinates.
y : array, shape = [n]
y coordinates.
reorder : boolean, optional (default=False)
If True, assume that the curve is ascending in the case of ties, as for an ROC curve. If the curve is non-ascending, the result will be wrong.
Returns: auc : float
See also
-
roc_auc_score
- Computes the area under the ROC curve
-
precision_recall_curve
- Compute precision-recall pairs for different probability thresholds
Examples
1234567>>>
import
numpy as np
>>>
from
sklearn
import
metrics
>>> y
=
np.array([
1
,
1
,
2
,
2
])
>>> pred
=
np.array([
0.1
,
0.4
,
0.35
,
0.8
])
>>> fpr, tpr, thresholds
=
metrics.roc_curve(y, pred, pos_label
=
2
)
>>> metrics.auc(fpr, tpr)
0.75
-
sklearn.metrics.auc()
Examples using

2025-01-10 15:47:30
Please login to continue.