-
sklearn.metrics.explained_variance_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average')
[source] -
Explained variance regression score function
Best possible score is 1.0, lower values are worse.
Read more in the User Guide.
Parameters: y_true : array-like of shape = (n_samples) or (n_samples, n_outputs)
Ground truth (correct) target values.
y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs)
Estimated target values.
sample_weight : array-like of shape = (n_samples), optional
Sample weights.
multioutput : string in [?raw_values?, ?uniform_average?, ?variance_weighted?] or array-like of shape (n_outputs)
Defines aggregating of multiple output scores. Array-like value defines weights used to average scores.
- ?raw_values? :
-
Returns a full set of scores in case of multioutput input.
- ?uniform_average? :
-
Scores of all outputs are averaged with uniform weight.
- ?variance_weighted? :
-
Scores of all outputs are averaged, weighted by the variances of each individual output.
Returns: score : float or ndarray of floats
The explained variance or ndarray if ?multioutput? is ?raw_values?.
Notes
This is not a symmetric function.
Examples
12345678910>>>
from
sklearn.metrics
import
explained_variance_score
>>> y_true
=
[
3
,
-
0.5
,
2
,
7
]
>>> y_pred
=
[
2.5
,
0.0
,
2
,
8
]
>>> explained_variance_score(y_true, y_pred)
0.957
...
>>> y_true
=
[[
0.5
,
1
], [
-
1
,
1
], [
7
,
-
6
]]
>>> y_pred
=
[[
0
,
2
], [
-
1
,
2
], [
8
,
-
5
]]
>>> explained_variance_score(y_true, y_pred, multioutput
=
'uniform_average'
)
...
0.983
...
sklearn.metrics.explained_variance_score()

2025-01-10 15:47:30
Please login to continue.