-
sklearn.metrics.pairwise.cosine_distances(X, Y=None)
[source] -
Compute cosine distance between samples in X and Y.
Cosine distance is defined as 1.0 minus the cosine similarity.
Read more in the User Guide.
Parameters: X : array_like, sparse matrix
with shape (n_samples_X, n_features).
Y : array_like, sparse matrix (optional)
with shape (n_samples_Y, n_features).
Returns: distance matrix : array
An array with shape (n_samples_X, n_samples_Y).
See also
sklearn.metrics.pairwise.cosine_similarity
,scipy.spatial.distance.cosine
sklearn.metrics.pairwise.cosine_distances()
2017-01-15 04:26:30
Please login to continue.