sklearn.metrics.pairwise.laplacian_kernel()

sklearn.metrics.pairwise.laplacian_kernel(X, Y=None, gamma=None) [source]

Compute the laplacian kernel between X and Y.

The laplacian kernel is defined as:

K(x, y) = exp(-gamma ||x-y||_1)

for each pair of rows x in X and y in Y. Read more in the User Guide.

New in version 0.17.

Parameters:

X : array of shape (n_samples_X, n_features)

Y : array of shape (n_samples_Y, n_features)

gamma : float, default None

If None, defaults to 1.0 / n_samples_X

Returns:

kernel_matrix : array of shape (n_samples_X, n_samples_Y)

doc_scikit_learn
2017-01-15 04:26:32
Comments
Leave a Comment

Please login to continue.