-
sklearn.metrics.pairwise.manhattan_distances(X, Y=None, sum_over_features=True, size_threshold=500000000.0)
[source] -
Compute the L1 distances between the vectors in X and Y.
With sum_over_features equal to False it returns the componentwise distances.
Read more in the User Guide.
Parameters: X : array_like
An array with shape (n_samples_X, n_features).
Y : array_like, optional
An array with shape (n_samples_Y, n_features).
sum_over_features : bool, default=True
If True the function returns the pairwise distance matrix else it returns the componentwise L1 pairwise-distances. Not supported for sparse matrix inputs.
size_threshold : int, default=5e8
Unused parameter.
Returns: D : array
If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and D contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape is (n_samples_X, n_samples_Y) and D contains the pairwise L1 distances.
Examples
12345678910111213141516>>>
from
sklearn.metrics.pairwise
import
manhattan_distances
>>> manhattan_distances([[
3
]], [[
3
]])
array([[
0.
]])
>>> manhattan_distances([[
3
]], [[
2
]])
array([[
1.
]])
>>> manhattan_distances([[
2
]], [[
3
]])
array([[
1.
]])
>>> manhattan_distances([[
1
,
2
], [
3
,
4
]], [[
1
,
2
], [
0
,
3
]])
array([[
0.
,
2.
],
[
4.
,
4.
]])
>>>
import
numpy as np
>>> X
=
np.ones((
1
,
2
))
>>> y
=
2
*
np.ones((
2
,
2
))
>>> manhattan_distances(X, y, sum_over_features
=
False
)
array([[
1.
,
1.
],
[
1.
,
1.
]]...)
sklearn.metrics.pairwise.manhattan_distances()

2025-01-10 15:47:30
Please login to continue.