Principal components analysis

These figures aid in illustrating how a point cloud can be very flat in one direction?which is where PCA comes in to choose a direction that is not flat.

1
2
3
4
5
6
7
8
9
10
11
12
13
print(__doc__)
 
# Authors: Gael Varoquaux
#          Jaques Grobler
#          Kevin Hughes
# License: BSD 3 clause
 
from sklearn.decomposition import PCA
 
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

Create the data

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
e = np.exp(1)
np.random.seed(4)
 
 
def pdf(x):
    return 0.5 * (stats.norm(scale=0.25 / e).pdf(x)
                  + stats.norm(scale=4 / e).pdf(x))
 
y = np.random.normal(scale=0.5, size=(30000))
x = np.random.normal(scale=0.5, size=(30000))
z = np.random.normal(scale=0.1, size=len(x))
 
density = pdf(x) * pdf(y)
pdf_z = pdf(5 * z)
 
density *= pdf_z
 
a = x + y
b = 2 * y
c = a - b + z
 
norm = np.sqrt(a.var() + b.var())
a /= norm
b /= norm

Plot the figures

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
def plot_figs(fig_num, elev, azim):
    fig = plt.figure(fig_num, figsize=(4, 3))
    plt.clf()
    ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim)
 
    ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4)
    Y = np.c_[a, b, c]
 
    # Using SciPy's SVD, this would be:
    # _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False)
 
    pca = PCA(n_components=3)
    pca.fit(Y)
    pca_score = pca.explained_variance_ratio_
    V = pca.components_
 
    x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min()
 
    x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T
    x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]]
    y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]]
    z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]]
    x_pca_plane.shape = (2, 2)
    y_pca_plane.shape = (2, 2)
    z_pca_plane.shape = (2, 2)
    ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane)
    ax.w_xaxis.set_ticklabels([])
    ax.w_yaxis.set_ticklabels([])
    ax.w_zaxis.set_ticklabels([])
 
 
elev = -40
azim = -80
plot_figs(1, elev, azim)
 
elev = 30
azim = 20
plot_figs(2, elev, azim)
 
plt.show()
  • ../../_images/sphx_glr_plot_pca_3d_001.png
  • ../../_images/sphx_glr_plot_pca_3d_002.png

Total running time of the script: (0 minutes 0.278 seconds)

Download Python source code: plot_pca_3d.py
Download IPython notebook: plot_pca_3d.ipynb
doc_scikit_learn
2017-01-15 04:25:14
Comments
Leave a Comment

Please login to continue.