The dataset used in this example is a preprocessed excerpt of the ?Labeled Faces in the Wild?, aka LFW:
http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)
Expected results for the top 5 most represented people in the dataset:
Ariel Sharon | 0.67 | 0.92 | 0.77 | 13 |
Colin Powell | 0.75 | 0.78 | 0.76 | 60 |
Donald Rumsfeld | 0.78 | 0.67 | 0.72 | 27 |
George W Bush | 0.86 | 0.86 | 0.86 | 146 |
Gerhard Schroeder | 0.76 | 0.76 | 0.76 | 25 |
Hugo Chavez | 0.67 | 0.67 | 0.67 | 15 |
Tony Blair | 0.81 | 0.69 | 0.75 | 36 |
avg / total | 0.80 | 0.80 | 0.80 | 322 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | from __future__ import print_function from time import time import logging import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.datasets import fetch_lfw_people from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.decomposition import PCA from sklearn.svm import SVC print (__doc__) # Display progress logs on stdout logging.basicConfig(level = logging.INFO, format = '%(asctime)s %(message)s' ) |
Download the data, if not already on disk and load it as numpy arrays
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | lfw_people = fetch_lfw_people(min_faces_per_person = 70 , resize = 0.4 ) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape # for machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape[ 1 ] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[ 0 ] print ( "Total dataset size:" ) print ( "n_samples: %d" % n_samples) print ( "n_features: %d" % n_features) print ( "n_classes: %d" % n_classes) |
Split into a training set and a test set using a stratified k fold
1 2 3 | # split into a training and testing set X_train, X_test, y_train, y_test = train_test_split( X, y, test_size = 0.25 , random_state = 42 ) |
Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled dataset): unsupervised feature extraction / dimensionality reduction
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | n_components = 150 print ( "Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[ 0 ])) t0 = time() pca = PCA(n_components = n_components, svd_solver = 'randomized' , whiten = True ).fit(X_train) print ( "done in %0.3fs" % (time() - t0)) eigenfaces = pca.components_.reshape((n_components, h, w)) print ( "Projecting the input data on the eigenfaces orthonormal basis" ) t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print ( "done in %0.3fs" % (time() - t0)) |
Train a SVM classification model
1 2 3 4 5 6 7 8 9 | print ( "Fitting the classifier to the training set" ) t0 = time() param_grid = { 'C' : [ 1e3 , 5e3 , 1e4 , 5e4 , 1e5 ], 'gamma' : [ 0.0001 , 0.0005 , 0.001 , 0.005 , 0.01 , 0.1 ], } clf = GridSearchCV(SVC(kernel = 'rbf' , class_weight = 'balanced' ), param_grid) clf = clf.fit(X_train_pca, y_train) print ( "done in %0.3fs" % (time() - t0)) print ( "Best estimator found by grid search:" ) print (clf.best_estimator_) |
Quantitative evaluation of the model quality on the test set
1 2 3 4 5 6 7 | print ( "Predicting people's names on the test set" ) t0 = time() y_pred = clf.predict(X_test_pca) print ( "done in %0.3fs" % (time() - t0)) print (classification_report(y_test, y_pred, target_names = target_names)) print (confusion_matrix(y_test, y_pred, labels = range (n_classes))) |
Qualitative evaluation of the predictions using matplotlib
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | def plot_gallery(images, titles, h, w, n_row = 3 , n_col = 4 ): """Helper function to plot a gallery of portraits""" plt.figure(figsize = ( 1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom = 0 , left = . 01 , right = . 99 , top = . 90 , hspace = . 35 ) for i in range (n_row * n_col): plt.subplot(n_row, n_col, i + 1 ) plt.imshow(images[i].reshape((h, w)), cmap = plt.cm.gray) plt.title(titles[i], size = 12 ) plt.xticks(()) plt.yticks(()) # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit( ' ' , 1 )[ - 1 ] true_name = target_names[y_test[i]].rsplit( ' ' , 1 )[ - 1 ] return 'predicted: %s\ntrue: %s' % (pred_name, true_name) prediction_titles = [title(y_pred, y_test, target_names, i) for i in range (y_pred.shape[ 0 ])] plot_gallery(X_test, prediction_titles, h, w) # plot the gallery of the most significative eigenfaces eigenface_titles = [ "eigenface %d" % i for i in range (eigenfaces.shape[ 0 ])] plot_gallery(eigenfaces, eigenface_titles, h, w) plt.show() |
Total running time of the script: (0 minutes 0.000 seconds)
face_recognition.py
face_recognition.ipynb
Please login to continue.