A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different kernels and parameter settings.
To create positive examples click the left mouse button; to create negative examples click the right button.
If all examples are from the same class, it uses a one-class SVM.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 | from __future__ import division, print_function print (__doc__) # Author: Peter Prettenhoer <peter.prettenhofer@gmail.com> # # License: BSD 3 clause import matplotlib matplotlib.use( 'TkAgg' ) from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib.contour import ContourSet try : import tkinter as Tk except ImportError: # Backward compat for Python 2 import Tkinter as Tk import sys import numpy as np from sklearn import svm from sklearn.datasets import dump_svmlight_file from sklearn.externals.six.moves import xrange y_min, y_max = - 50 , 50 x_min, x_max = - 50 , 50 class Model( object ): """The Model which hold the data. It implements the observable in the observer pattern and notifies the registered observers on change event. """ def __init__( self ): self .observers = [] self .surface = None self .data = [] self . cls = None self .surface_type = 0 def changed( self , event): """Notify the observers. """ for observer in self .observers: observer.update(event, self ) def add_observer( self , observer): """Register an observer. """ self .observers.append(observer) def set_surface( self , surface): self .surface = surface def dump_svmlight_file( self , file ): data = np.array( self .data) X = data[:, 0 : 2 ] y = data[:, 2 ] dump_svmlight_file(X, y, file ) class Controller( object ): def __init__( self , model): self .model = model self .kernel = Tk.IntVar() self .surface_type = Tk.IntVar() # Whether or not a model has been fitted self .fitted = False def fit( self ): print ( "fit the model" ) train = np.array( self .model.data) X = train[:, 0 : 2 ] y = train[:, 2 ] C = float ( self .complexity.get()) gamma = float ( self .gamma.get()) coef0 = float ( self .coef0.get()) degree = int ( self .degree.get()) kernel_map = { 0 : "linear" , 1 : "rbf" , 2 : "poly" } if len (np.unique(y)) = = 1 : clf = svm.OneClassSVM(kernel = kernel_map[ self .kernel.get()], gamma = gamma, coef0 = coef0, degree = degree) clf.fit(X) else : clf = svm.SVC(kernel = kernel_map[ self .kernel.get()], C = C, gamma = gamma, coef0 = coef0, degree = degree) clf.fit(X, y) if hasattr (clf, 'score' ): print ( "Accuracy:" , clf.score(X, y) * 100 ) X1, X2, Z = self .decision_surface(clf) self .model.clf = clf self .model.set_surface((X1, X2, Z)) self .model.surface_type = self .surface_type.get() self .fitted = True self .model.changed( "surface" ) def decision_surface( self , cls ): delta = 1 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = cls .decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) return X1, X2, Z def clear_data( self ): self .model.data = [] self .fitted = False self .model.changed( "clear" ) def add_example( self , x, y, label): self .model.data.append((x, y, label)) self .model.changed( "example_added" ) # update decision surface if already fitted. self .refit() def refit( self ): """Refit the model if already fitted. """ if self .fitted: self .fit() class View( object ): """Test docstring. """ def __init__( self , root, controller): f = Figure() ax = f.add_subplot( 111 ) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) canvas = FigureCanvasTkAgg(f, master = root) canvas.show() canvas.get_tk_widget().pack(side = Tk.TOP, fill = Tk.BOTH, expand = 1 ) canvas._tkcanvas.pack(side = Tk.TOP, fill = Tk.BOTH, expand = 1 ) canvas.mpl_connect( 'button_press_event' , self .onclick) toolbar = NavigationToolbar2TkAgg(canvas, root) toolbar.update() self .controllbar = ControllBar(root, controller) self .f = f self .ax = ax self .canvas = canvas self .controller = controller self .contours = [] self .c_labels = None self .plot_kernels() def plot_kernels( self ): self .ax.text( - 50 , - 60 , "Linear: $u^T v$" ) self .ax.text( - 20 , - 60 , "RBF: $\exp (-\gamma \| u-v \|^2)$" ) self .ax.text( 10 , - 60 , "Poly: $(\gamma \, u^T v + r)^d$" ) def onclick( self , event): if event.xdata and event.ydata: if event.button = = 1 : self .controller.add_example(event.xdata, event.ydata, 1 ) elif event.button = = 3 : self .controller.add_example(event.xdata, event.ydata, - 1 ) def update_example( self , model, idx): x, y, l = model.data[idx] if l = = 1 : color = 'w' elif l = = - 1 : color = 'k' self .ax.plot([x], [y], "%so" % color, scalex = 0.0 , scaley = 0.0 ) def update( self , event, model): if event = = "examples_loaded" : for i in xrange ( len (model.data)): self .update_example(model, i) if event = = "example_added" : self .update_example(model, - 1 ) if event = = "clear" : self .ax.clear() self .ax.set_xticks([]) self .ax.set_yticks([]) self .contours = [] self .c_labels = None self .plot_kernels() if event = = "surface" : self .remove_surface() self .plot_support_vectors(model.clf.support_vectors_) self .plot_decision_surface(model.surface, model.surface_type) self .canvas.draw() def remove_surface( self ): """Remove old decision surface.""" if len ( self .contours) > 0 : for contour in self .contours: if isinstance (contour, ContourSet): for lineset in contour.collections: lineset.remove() else : contour.remove() self .contours = [] def plot_support_vectors( self , support_vectors): """Plot the support vectors by placing circles over the corresponding data points and adds the circle collection to the contours list.""" cs = self .ax.scatter(support_vectors[:, 0 ], support_vectors[:, 1 ], s = 80 , edgecolors = "k" , facecolors = "none" ) self .contours.append(cs) def plot_decision_surface( self , surface, type ): X1, X2, Z = surface if type = = 0 : levels = [ - 1.0 , 0.0 , 1.0 ] linestyles = [ 'dashed' , 'solid' , 'dashed' ] colors = 'k' self .contours.append( self .ax.contour(X1, X2, Z, levels, colors = colors, linestyles = linestyles)) elif type = = 1 : self .contours.append( self .ax.contourf(X1, X2, Z, 10 , cmap = matplotlib.cm.bone, origin = 'lower' , alpha = 0.85 )) self .contours.append( self .ax.contour(X1, X2, Z, [ 0.0 ], colors = 'k' , linestyles = [ 'solid' ])) else : raise ValueError( "surface type unknown" ) class ControllBar( object ): def __init__( self , root, controller): fm = Tk.Frame(root) kernel_group = Tk.Frame(fm) Tk.Radiobutton(kernel_group, text = "Linear" , variable = controller.kernel, value = 0 , command = controller.refit).pack(anchor = Tk.W) Tk.Radiobutton(kernel_group, text = "RBF" , variable = controller.kernel, value = 1 , command = controller.refit).pack(anchor = Tk.W) Tk.Radiobutton(kernel_group, text = "Poly" , variable = controller.kernel, value = 2 , command = controller.refit).pack(anchor = Tk.W) kernel_group.pack(side = Tk.LEFT) valbox = Tk.Frame(fm) controller.complexity = Tk.StringVar() controller.complexity. set ( "1.0" ) c = Tk.Frame(valbox) Tk.Label(c, text = "C:" , anchor = "e" , width = 7 ).pack(side = Tk.LEFT) Tk.Entry(c, width = 6 , textvariable = controller.complexity).pack( side = Tk.LEFT) c.pack() controller.gamma = Tk.StringVar() controller.gamma. set ( "0.01" ) g = Tk.Frame(valbox) Tk.Label(g, text = "gamma:" , anchor = "e" , width = 7 ).pack(side = Tk.LEFT) Tk.Entry(g, width = 6 , textvariable = controller.gamma).pack(side = Tk.LEFT) g.pack() controller.degree = Tk.StringVar() controller.degree. set ( "3" ) d = Tk.Frame(valbox) Tk.Label(d, text = "degree:" , anchor = "e" , width = 7 ).pack(side = Tk.LEFT) Tk.Entry(d, width = 6 , textvariable = controller.degree).pack(side = Tk.LEFT) d.pack() controller.coef0 = Tk.StringVar() controller.coef0. set ( "0" ) r = Tk.Frame(valbox) Tk.Label(r, text = "coef0:" , anchor = "e" , width = 7 ).pack(side = Tk.LEFT) Tk.Entry(r, width = 6 , textvariable = controller.coef0).pack(side = Tk.LEFT) r.pack() valbox.pack(side = Tk.LEFT) cmap_group = Tk.Frame(fm) Tk.Radiobutton(cmap_group, text = "Hyperplanes" , variable = controller.surface_type, value = 0 , command = controller.refit).pack(anchor = Tk.W) Tk.Radiobutton(cmap_group, text = "Surface" , variable = controller.surface_type, value = 1 , command = controller.refit).pack(anchor = Tk.W) cmap_group.pack(side = Tk.LEFT) train_button = Tk.Button(fm, text = 'Fit' , width = 5 , command = controller.fit) train_button.pack() fm.pack(side = Tk.LEFT) Tk.Button(fm, text = 'Clear' , width = 5 , command = controller.clear_data).pack(side = Tk.LEFT) def get_parser(): from optparse import OptionParser op = OptionParser() op.add_option( "--output" , action = "store" , type = "str" , dest = "output" , help = "Path where to dump data." ) return op def main(argv): op = get_parser() opts, args = op.parse_args(argv[ 1 :]) root = Tk.Tk() model = Model() controller = Controller(model) root.wm_title( "Scikit-learn Libsvm GUI" ) view = View(root, controller) model.add_observer(view) Tk.mainloop() if opts.output: model.dump_svmlight_file(opts.output) if __name__ = = "__main__" : main(sys.argv) |
Total running time of the script: (0 minutes 0.000 seconds)
Download Python source code:
svm_gui.py
Download IPython notebook:
svm_gui.ipynb
Please login to continue.