A recursive feature elimination example showing the relevance of pixels in a digit classification task.
Note
See also Recursive feature elimination with cross-validation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | print (__doc__) from sklearn.svm import SVC from sklearn.datasets import load_digits from sklearn.feature_selection import RFE import matplotlib.pyplot as plt # Load the digits dataset digits = load_digits() X = digits.images.reshape(( len (digits.images), - 1 )) y = digits.target # Create the RFE object and rank each pixel svc = SVC(kernel = "linear" , C = 1 ) rfe = RFE(estimator = svc, n_features_to_select = 1 , step = 1 ) rfe.fit(X, y) ranking = rfe.ranking_.reshape(digits.images[ 0 ].shape) # Plot pixel ranking plt.matshow(ranking, cmap = plt.cm.Blues) plt.colorbar() plt.title( "Ranking of pixels with RFE" ) plt.show() |
Total running time of the script: (0 minutes 4.802 seconds)
Download Python source code:
plot_rfe_digits.py
Download IPython notebook:
plot_rfe_digits.ipynb
Please login to continue.