This example shows how to use cross_val_predict
to visualize prediction errors.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | from sklearn import datasets from sklearn.model_selection import cross_val_predict from sklearn import linear_model import matplotlib.pyplot as plt lr = linear_model.LinearRegression() boston = datasets.load_boston() y = boston.target # cross_val_predict returns an array of the same size as `y` where each entry # is a prediction obtained by cross validation: predicted = cross_val_predict(lr, boston.data, y, cv = 10 ) fig, ax = plt.subplots() ax.scatter(y, predicted) ax.plot([y. min (), y. max ()], [y. min (), y. max ()], 'k--' , lw = 4 ) ax.set_xlabel( 'Measured' ) ax.set_ylabel( 'Predicted' ) plt.show() |
Total running time of the script: (0 minutes 0.114 seconds)
Download Python source code:
plot_cv_predict.py
Download IPython notebook:
plot_cv_predict.ipynb
Please login to continue.