This example shows how to use cross_val_predict
to visualize prediction errors.
from sklearn import datasets from sklearn.model_selection import cross_val_predict from sklearn import linear_model import matplotlib.pyplot as plt lr = linear_model.LinearRegression() boston = datasets.load_boston() y = boston.target # cross_val_predict returns an array of the same size as `y` where each entry # is a prediction obtained by cross validation: predicted = cross_val_predict(lr, boston.data, y, cv=10) fig, ax = plt.subplots() ax.scatter(y, predicted) ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4) ax.set_xlabel('Measured') ax.set_ylabel('Predicted') plt.show()
Total running time of the script: (0 minutes 0.114 seconds)
Download Python source code:
plot_cv_predict.py
Download IPython notebook:
plot_cv_predict.ipynb
Please login to continue.