Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter.
Out:
1 2 | Computing regularization path using the LARS ... . |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | print (__doc__) # Author: Fabian Pedregosa <fabian.pedregosa@inria.fr> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target print ( "Computing regularization path using the LARS ..." ) alphas, _, coefs = linear_model.lars_path(X, y, method = 'lasso' , verbose = True ) xx = np. sum (np. abs (coefs.T), axis = 1 ) xx / = xx[ - 1 ] plt.plot(xx, coefs.T) ymin, ymax = plt.ylim() plt.vlines(xx, ymin, ymax, linestyle = 'dashed' ) plt.xlabel( '|coef| / max|coef|' ) plt.ylabel( 'Coefficients' ) plt.title( 'LASSO Path' ) plt.axis( 'tight' ) plt.show() |
Total running time of the script: (0 minutes 0.107 seconds)
Download Python source code:
plot_lasso_lars.py
Download IPython notebook:
plot_lasso_lars.ipynb
Please login to continue.