Show below is a logistic-regression classifiers decision boundaries on the iris dataset. The datapoints are colored according to their labels.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | print (__doc__) # Code source: Ga Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, : 2 ] # we only take the first two features. Y = iris.target h = . 02 # step size in the mesh logreg = linear_model.LogisticRegression(C = 1e5 ) # we create an instance of Neighbours Classifier and fit the data. logreg.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0 ]. min () - . 5 , X[:, 0 ]. max () + . 5 y_min, y_max = X[:, 1 ]. min () - . 5 , X[:, 1 ]. max () + . 5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure( 1 , figsize = ( 4 , 3 )) plt.pcolormesh(xx, yy, Z, cmap = plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0 ], X[:, 1 ], c = Y, edgecolors = 'k' , cmap = plt.cm.Paired) plt.xlabel( 'Sepal length' ) plt.ylabel( 'Sepal width' ) plt.xlim(xx. min (), xx. max ()) plt.ylim(yy. min (), yy. max ()) plt.xticks(()) plt.yticks(()) plt.show() |
Total running time of the script: (0 minutes 0.087 seconds)
Download Python source code:
plot_iris_logistic.py
Download IPython notebook:
plot_iris_logistic.ipynb
Please login to continue.