In this example we see how to robustly fit a linear model to faulty data using the RANSAC algorithm.
Out:
1 2 | Estimated coefficients (true, normal, RANSAC): 82.1903908408 [ 54.17236387 ] [ 82.08533159 ] |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | import numpy as np from matplotlib import pyplot as plt from sklearn import linear_model, datasets n_samples = 1000 n_outliers = 50 X, y, coef = datasets.make_regression(n_samples = n_samples, n_features = 1 , n_informative = 1 , noise = 10 , coef = True , random_state = 0 ) # Add outlier data np.random.seed( 0 ) X[:n_outliers] = 3 + 0.5 * np.random.normal(size = (n_outliers, 1 )) y[:n_outliers] = - 3 + 10 * np.random.normal(size = n_outliers) # Fit line using all data model = linear_model.LinearRegression() model.fit(X, y) # Robustly fit linear model with RANSAC algorithm model_ransac = linear_model.RANSACRegressor(linear_model.LinearRegression()) model_ransac.fit(X, y) inlier_mask = model_ransac.inlier_mask_ outlier_mask = np.logical_not(inlier_mask) # Predict data of estimated models line_X = np.arange( - 5 , 5 ) line_y = model.predict(line_X[:, np.newaxis]) line_y_ransac = model_ransac.predict(line_X[:, np.newaxis]) # Compare estimated coefficients print ( "Estimated coefficients (true, normal, RANSAC):" ) print (coef, model.coef_, model_ransac.estimator_.coef_) lw = 2 plt.scatter(X[inlier_mask], y[inlier_mask], color = 'yellowgreen' , marker = '.' , label = 'Inliers' ) plt.scatter(X[outlier_mask], y[outlier_mask], color = 'gold' , marker = '.' , label = 'Outliers' ) plt.plot(line_X, line_y, color = 'navy' , linestyle = '-' , linewidth = lw, label = 'Linear regressor' ) plt.plot(line_X, line_y_ransac, color = 'cornflowerblue' , linestyle = '-' , linewidth = lw, label = 'RANSAC regressor' ) plt.legend(loc = 'lower right' ) plt.show() |
Total running time of the script: (0 minutes 0.126 seconds)
Download Python source code:
plot_ransac.py
Download IPython notebook:
plot_ransac.ipynb
Please login to continue.