The plots below illustrate the effect the parameter C
has on the separation line. A large value of C
basically tells our model that we do not have that much faith in our data?s distribution, and will only consider points close to line of separation.
A small value of C
includes more/all the observations, allowing the margins to be calculated using all the data in the area.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | print (__doc__) # Code source: Ga Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed( 0 ) X = np.r_[np.random.randn( 20 , 2 ) - [ 2 , 2 ], np.random.randn( 20 , 2 ) + [ 2 , 2 ]] Y = [ 0 ] * 20 + [ 1 ] * 20 # figure number fignum = 1 # fit the model for name, penalty in (( 'unreg' , 1 ), ( 'reg' , 0.05 )): clf = svm.SVC(kernel = 'linear' , C = penalty) clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[ 0 ] a = - w[ 0 ] / w[ 1 ] xx = np.linspace( - 5 , 5 ) yy = a * xx - (clf.intercept_[ 0 ]) / w[ 1 ] # plot the parallels to the separating hyperplane that pass through the # support vectors margin = 1 / np.sqrt(np. sum (clf.coef_ * * 2 )) yy_down = yy + a * margin yy_up = yy - a * margin # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize = ( 4 , 3 )) plt.clf() plt.plot(xx, yy, 'k-' ) plt.plot(xx, yy_down, 'k--' ) plt.plot(xx, yy_up, 'k--' ) plt.scatter(clf.support_vectors_[:, 0 ], clf.support_vectors_[:, 1 ], s = 80 , facecolors = 'none' , zorder = 10 ) plt.scatter(X[:, 0 ], X[:, 1 ], c = Y, zorder = 10 , cmap = plt.cm.Paired) plt.axis( 'tight' ) x_min = - 4.8 x_max = 4.2 y_min = - 6 y_max = 6 XX, YY = np.mgrid[x_min:x_max: 200j , y_min:y_max: 200j ] Z = clf.predict(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize = ( 4 , 3 )) plt.pcolormesh(XX, YY, Z, cmap = plt.cm.Paired) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show() |
Total running time of the script: (0 minutes 0.147 seconds)
Download Python source code:
plot_svm_margin.py
Download IPython notebook:
plot_svm_margin.ipynb
Please login to continue.