Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | print (__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, : 2 ] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset Y = iris.target def my_kernel(X, Y): """ We create a custom kernel: (2 0) k(X, Y) = X ( ) Y.T (0 1) """ M = np.array([[ 2 , 0 ], [ 0 , 1.0 ]]) return np.dot(np.dot(X, M), Y.T) h = . 02 # step size in the mesh # we create an instance of SVM and fit out data. clf = svm.SVC(kernel = my_kernel) clf.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0 ]. min () - 1 , X[:, 0 ]. max () + 1 y_min, y_max = X[:, 1 ]. min () - 1 , X[:, 1 ]. max () + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap = plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0 ], X[:, 1 ], c = Y, cmap = plt.cm.Paired) plt.title( '3-Class classification using Support Vector Machine with custom' ' kernel' ) plt.axis( 'tight' ) plt.show() |
Total running time of the script: (0 minutes 0.900 seconds)
Download Python source code:
plot_custom_kernel.py
Download IPython notebook:
plot_custom_kernel.ipynb
Please login to continue.