tf.contrib.learn.Estimator.__init__()

tf.contrib.learn.Estimator.__init__(model_fn=None, model_dir=None, config=None, params=None, feature_engineering_fn=None) Constructs an Estimator instance. Args: model_fn: Model function, takes features and targets tensors or dicts of tensors and returns predictions and loss tensors. Supports next three signatures for the function: (features, targets) -> (predictions, loss, train_op) (features, targets, mode) -> (predictions, loss, train_op) (features, targets, mode, params) -> (pred

tf.contrib.learn.Estimator.set_params()

tf.contrib.learn.Estimator.set_params(**params) Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it's possible to update each component of a nested object. Args: **params: Parameters. Returns: self Raises: ValueError: If params contain invalid names.

tf.contrib.learn.Estimator.predict()

tf.contrib.learn.Estimator.predict(*args, **kwargs) Returns predictions for given features. (deprecated arguments) SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15. Instructions for updating: The default behavior of predict() is changing. The default value for as_iterable will change to True, and then the flag will be removed altogether. The behavior of this flag is described below. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arr

tf.contrib.learn.Estimator.partial_fit()

tf.contrib.learn.Estimator.partial_fit(x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None) Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training. This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to

tf.contrib.learn.Estimator.model_dir

tf.contrib.learn.Estimator.model_dir

tf.contrib.learn.Estimator.get_variable_value()

tf.contrib.learn.Estimator.get_variable_value(name) Returns value of the variable given by name. Args: name: string, name of the tensor. Returns: Numpy array - value of the tensor.

tf.contrib.learn.Estimator.get_variable_names()

tf.contrib.learn.Estimator.get_variable_names() Returns list of all variable names in this model. Returns: List of names.

tf.contrib.learn.Estimator.get_params()

tf.contrib.learn.Estimator.get_params(deep=True) Get parameters for this estimator. Args: deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params : mapping of string to any Parameter names mapped to their values.

tf.contrib.learn.Estimator.fit()

tf.contrib.learn.Estimator.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) See Trainable. Raises: ValueError: If x or y are not None while input_fn is not None. ValueError: If both steps and max_steps are not None.

tf.contrib.learn.Estimator.export()

tf.contrib.learn.Estimator.export(*args, **kwargs) Exports inference graph into given dir. (deprecated arguments) SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23. Instructions for updating: The signature of the input_fn accepted by export is changing to be consistent with what's used by tf.Learn Estimator's train/evaluate. input_fn (and in most cases, input_feature_key) will become required args, and use_deprecated_input_fn will default to False and be removed altogether.