tf.contrib.learn.LinearRegressor.fit()

tf.contrib.learn.LinearRegressor.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) See Trainable. Raises: ValueError: If x or y are not None while input_fn is not None. ValueError: If both steps and max_steps are not None.

tf.contrib.learn.LinearRegressor.export()

tf.contrib.learn.LinearRegressor.export(*args, **kwargs) Exports inference graph into given dir. (deprecated arguments) SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23. Instructions for updating: The signature of the input_fn accepted by export is changing to be consistent with what's used by tf.Learn Estimator's train/evaluate. input_fn (and in most cases, input_feature_key) will become required args, and use_deprecated_input_fn will default to False and be removed altoge

tf.contrib.learn.LinearRegressor.evaluate()

tf.contrib.learn.LinearRegressor.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) See Evaluable. Raises: ValueError: If at least one of x or y is provided, and at least one of input_fn or feed_fn is provided. Or if metrics is not None or dict.

tf.contrib.learn.LinearRegressor.dnn_weights_

tf.contrib.learn.LinearRegressor.dnn_weights_ Returns weights of deep neural network part.

tf.contrib.learn.LinearRegressor.dnn_bias_

tf.contrib.learn.LinearRegressor.dnn_bias_ Returns bias of deep neural network part.

tf.contrib.learn.LinearRegressor.config

tf.contrib.learn.LinearRegressor.config

tf.contrib.learn.LinearRegressor.bias_

tf.contrib.learn.LinearRegressor.bias_

tf.contrib.learn.LinearRegressor

class tf.contrib.learn.LinearRegressor Linear regressor model. Train a linear regression model to predict target variable value given observation of feature values. Example: education = sparse_column_with_hash_bucket(column_name="education", hash_bucket_size=1000) occupation = sparse_column_with_hash_bucket(column_name="occupation", hash_bucket_size=1000) education_x_occupation = crossed_column(columns=[edu

tf.contrib.learn.LinearClassifier.__init__()

tf.contrib.learn.LinearClassifier.__init__(feature_columns, model_dir=None, n_classes=2, weight_column_name=None, optimizer=None, gradient_clip_norm=None, enable_centered_bias=None, _joint_weight=False, config=None) Construct a LinearClassifier estimator object. Args: feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from FeatureColumn. model_dir: Directory to save model parameters, graph and etc. Th

tf.contrib.learn.LinearClassifier.weights_

tf.contrib.learn.LinearClassifier.weights_