class tf.contrib.learn.LinearRegressor
Linear regressor model.
Train a linear regression model to predict target variable value given observation of feature values.
Example:
education = sparse_column_with_hash_bucket(column_name="education",
                                           hash_bucket_size=1000)
occupation = sparse_column_with_hash_bucket(column_name="occupation",
                                            hash_bucket_size=1000)
education_x_occupation = crossed_column(columns=[education, occupation],
                                        hash_bucket_size=10000)
estimator = LinearRegressor(
    feature_columns=[occupation, education_x_occupation])
# Input builders
def input_fn_train: # returns x, y
  ...
def input_fn_eval: # returns x, y
  ...
estimator.fit(input_fn=input_fn_train)
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x)
Input of fit and evaluate should have following features, otherwise there will be a KeyError:
- if 
weight_column_nameis notNone: key=weight_column_name, value=aTensor - for column in 
feature_columns:- if isinstance(column, 
SparseColumn): key=column.name, value=aSparseTensor - if isinstance(column, 
WeightedSparseColumn): - if isinstance(column, 
RealValuedColumn): key=column.name, value=aTensor- - - 
 - if isinstance(column, 
 
Please login to continue.