tf.contrib.learn.LinearRegressor.export(*args, **kwargs)
Exports inference graph into given dir. (deprecated arguments)
SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23. Instructions for updating: The signature of the input_fn accepted by export is changing to be consistent with what's used by tf.Learn Estimator's train/evaluate. input_fn (and in most cases, input_feature_key) will become required args, and use_deprecated_input_fn will default to False and be removed altogether.
Args: export_dir: A string containing a directory to write the exported graph and checkpoints. input_fn: If `use_deprecated_input_fn` is true, then a function that given `Tensor` of `Example` strings, parses it into features that are then passed to the model. Otherwise, a function that takes no argument and returns a tuple of (features, targets), where features is a dict of string key to `Tensor` and targets is a `Tensor` that's currently not used (and so can be `None`). input_feature_key: Only used if `use_deprecated_input_fn` is false. String key into the features dict returned by `input_fn` that corresponds to the raw `Example` strings `Tensor` that the exported model will take as input. Can only be `None` if you're using a custom `signature_fn` that does not use the first arg (examples). use_deprecated_input_fn: Determines the signature format of `input_fn`. signature_fn: Function that returns a default signature and a named signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s for features and `Tensor` or `dict` of `Tensor`s for predictions. prediction_key: The key for a tensor in the `predictions` dict (output from the `model_fn`) to use as the `predictions` input to the `signature_fn`. Optional. If `None`, predictions will pass to `signature_fn` without filtering. default_batch_size: Default batch size of the `Example` placeholder. exports_to_keep: Number of exports to keep. Returns: The string path to the exported directory. NB: this functionality was added ca. 2016/09/25; clients that depend on the return value may need to handle the case where this function returns None because subclasses are not returning a value.
Please login to continue.