tf.contrib.graph_editor.ControlOutputs.graph

tf.contrib.graph_editor.ControlOutputs.graph

tensorflow::Tensor::shaped()

TTypes< T, NDIMS >::Tensor tensorflow::Tensor::shaped(gtl::ArraySlice< int64 > new_sizes)

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor

class tf.contrib.bayesflow.stochastic_tensor.DirichletTensor DirichletTensor is a StochasticTensor backed by the distribution Dirichlet.

tf.sqrt()

tf.sqrt(x, name=None) Computes square root of x element-wise. I.e., (y = \sqrt{x} = x^{1/2}). Args: x: A Tensor or SparseTensor. Must be one of the following types: half, float32, float64, complex64, complex128. name: A name for the operation (optional). Returns: A Tensor or SparseTensor, respectively. Has the same type as x.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.name

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.name

tf.contrib.distributions.Distribution.mode()

tf.contrib.distributions.Distribution.mode(name='mode') Mode.

tf.contrib.learn.monitors.NanLoss.begin()

tf.contrib.learn.monitors.NanLoss.begin(max_steps=None) Called at the beginning of training. When called, the default graph is the one we are executing. Args: max_steps: int, the maximum global step this training will run until. Raises: ValueError: if we've already begun a run.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.name

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.name

tf.contrib.distributions.DirichletMultinomial.pmf()

tf.contrib.distributions.DirichletMultinomial.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.learn.monitors.GraphDump.step_end()

tf.contrib.learn.monitors.GraphDump.step_end(step, output)