tf.VarLenFeature

class tf.VarLenFeature Configuration for parsing a variable-length input feature. Fields: dtype: Data type of input.

tensorflow::Tensor::unaligned_shaped()

TTypes< T, NDIMS >::UnalignedConstTensor tensorflow::Tensor::unaligned_shaped(gtl::ArraySlice< int64 > new_sizes) const

tf.nn.rnn_cell.DropoutWrapper.__call__()

tf.nn.rnn_cell.DropoutWrapper.__call__(inputs, state, scope=None) Run the cell with the declared dropouts.

tf.contrib.distributions.Categorical

class tf.contrib.distributions.Categorical Categorical distribution. The categorical distribution is parameterized by the log-probabilities of a set of classes.

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.entropy(name='entropy')

tf.contrib.learn.monitors.SummarySaver.every_n_step_end()

tf.contrib.learn.monitors.SummarySaver.every_n_step_end(step, outputs)

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.entropy(name='entropy')

tf.contrib.distributions.Distribution.get_batch_shape()

tf.contrib.distributions.Distribution.get_batch_shape() Shape of a single sample from a single event index as a TensorShape. Same meaning as batch_shape. May be only partially defined. Returns: batch_shape: TensorShape, possibly unknown.

tf.SparseTensorValue.values

tf.SparseTensorValue.values Alias for field number 1

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.distribution