tf.contrib.learn.TensorFlowEstimator.restore()

tf.contrib.learn.TensorFlowEstimator.restore(cls, path, config=None) Restores model from give path. Args: path: Path to the checkpoints and other model information. config: RunConfig object that controls the configurations of the session, e.g. num_cores, gpu_memory_fraction, etc. This is allowed to be reconfigured. Returns: Estimator, object of the subclass of TensorFlowEstimator. Raises: ValueError: if path does not contain a model definition.

tensorflow::EnvWrapper::GetSymbolFromLibrary()

Status tensorflow::EnvWrapper::GetSymbolFromLibrary(void *handle, const char *symbol_name, void **symbol) override

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.allow_nan_stats

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student'

tf.contrib.distributions.BernoulliWithSigmoidP.name

tf.contrib.distributions.BernoulliWithSigmoidP.name Name prepended to all ops created by this Distribution.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.value_type

tf.SparseTensor.values

tf.SparseTensor.values The non-zero values in the represented dense tensor. Returns: A 1-D Tensor of any data type.

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.graph

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.graph

tf.contrib.distributions.WishartFull.dimension

tf.contrib.distributions.WishartFull.dimension Dimension of underlying vector space. The p in R^(p*p).

tf.contrib.distributions.Beta.validate_args

tf.contrib.distributions.Beta.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.distribution