tf.contrib.distributions.Beta.std()

tf.contrib.distributions.Beta.std(name='std') Standard deviation.

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.name

tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.name

tensorflow::Tensor::matrix()

TTypes<T>::Matrix tensorflow::Tensor::matrix()

tf.TFRecordReader.read_up_to()

tf.TFRecordReader.read_up_to(queue, num_records, name=None) Returns up to num_records (key, value pairs) produced by a reader. Will dequeue a work unit from queue if necessary (e.g., when the Reader needs to start reading from a new file since it has finished with the previous file). It may return less than num_records even before the last batch. Args: queue: A Queue or a mutable string Tensor representing a handle to a Queue, with string work items. num_records: Number of records to read.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sample()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.nn.rnn_cell.EmbeddingWrapper

class tf.nn.rnn_cell.EmbeddingWrapper Operator adding input embedding to the given cell. Note: in many cases it may be more efficient to not use this wrapper, but instead concatenate the whole sequence of your inputs in time, do the embedding on this batch-concatenated sequence, then split it and feed into your RNN.

tf.SparseTensorValue.__getstate__()

tf.SparseTensorValue.__getstate__() Exclude the OrderedDict from pickling

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.name

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.name

tf.contrib.distributions.Beta.mode()

tf.contrib.distributions.Beta.mode(name='mode') Mode. Additional documentation from Beta: Note that the mode for the Beta distribution is only defined when a > 1, b > 1. This returns the mode when a > 1 and b > 1, and NaN otherwise. If self.allow_nan_stats is False, an exception will be raised rather than returning NaN.

tf.contrib.distributions.MultivariateNormalDiag.batch_shape()

tf.contrib.distributions.MultivariateNormalDiag.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.