tf.contrib.framework.local_variable()

tf.contrib.framework.local_variable(initial_value, validate_shape=True, name=None) Create variable and add it to GraphKeys.LOCAL_VARIABLES collection. Args: initial_value: See variables.Variable.__init__. validate_shape: See variables.Variable.__init__. name: See variables.Variable.__init__. Returns: New variable.

tf.contrib.framework.get_unique_variable()

tf.contrib.framework.get_unique_variable(var_op_name) Gets the variable uniquely identified by that var_op_name. Args: var_op_name: the full name of the variable op, including the scope. Returns: a tensorflow variable. Raises: ValueError: if no variable uniquely identified by the name exists.

tf.contrib.framework.get_variables_by_name()

tf.contrib.framework.get_variables_by_name(given_name, scope=None) Gets the list of variables that were given that name. Args: given_name: name given to the variable without any scope. scope: an optional scope for filtering the variables to return. Returns: a copied list of variables with the given name and scope.

tf.contrib.framework.get_variables()

tf.contrib.framework.get_variables(scope=None, suffix=None, collection='variables') Gets the list of variables, filtered by scope and/or suffix. Args: scope: an optional scope for filtering the variables to return. suffix: an optional suffix for filtering the variables to return. collection: in which collection search for. Defaults to GraphKeys.VARIABLES. Returns: a list of variables in collection with scope and suffix.

tf.contrib.framework.get_variables_by_suffix()

tf.contrib.framework.get_variables_by_suffix(suffix, scope=None) Gets the list of variables that end with the given suffix. Args: suffix: suffix for filtering the variables to return. scope: an optional scope for filtering the variables to return. Returns: a copied list of variables with the given name and prefix.

tf.contrib.framework.has_arg_scope()

tf.contrib.framework.has_arg_scope(func) Checks whether a func has been decorated with @add_arg_scope or not. Args: func: function to check. Returns: a boolean.

tf.contrib.framework.get_variables_to_restore()

tf.contrib.framework.get_variables_to_restore(include=None, exclude=None) Gets the list of the variables to restore. Args: include: an optional list/tuple of scope strings for filtering which variables from the VARIABLES collection to include. None would include all the variables. exclude: an optional list/tuple of scope strings for filtering which variables from the VARIABLES collection to exclude. None it would not exclude any. Returns: a list of variables to restore. Raises: TypeError:

tf.contrib.framework.get_global_step()

tf.contrib.framework.get_global_step(graph=None) Get the global step tensor. The global step tensor must be an integer variable. We first try to find it in the collection GLOBAL_STEP, or by name global_step:0. Args: graph: The graph to find the global step in. If missing, use default graph. Returns: The global step variable, or None if none was found. Raises: TypeError: If the global step tensor has a non-integer type, or if it is not a Variable.

tf.contrib.framework.get_local_variables()

tf.contrib.framework.get_local_variables(scope=None, suffix=None) Gets the list of model variables, filtered by scope and/or suffix. Args: scope: an optional scope for filtering the variables to return. suffix: an optional suffix for filtering the variables to return. Returns: a list of variables in collection with scope and suffix.

tf.contrib.framework.get_model_variables()

tf.contrib.framework.get_model_variables(scope=None, suffix=None) Gets the list of model variables, filtered by scope and/or suffix. Args: scope: an optional scope for filtering the variables to return. suffix: an optional suffix for filtering the variables to return. Returns: a list of variables in collection with scope and suffix.