tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_pdf()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_survival_function()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: val

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_cdf()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.is_reparameterized

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.is_reparameterized

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.is_continuous

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.is_continuous

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.get_event_shape()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.get_event_shape() Shape of a single sample from a single batch as a TensorShape. Same meaning as event_shape. May be only partially defined. Returns: event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.entropy()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.get_batch_shape()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.get_batch_shape() Shape of a single sample from a single event index as a TensorShape. Same meaning as batch_shape. May be only partially defined. Returns: batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.event_shape()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.dtype

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.dtype The DType of Tensors handled by this Distribution.