tf.get_default_session()

tf.get_default_session() Returns the default session for the current thread. The returned Session will be the innermost session on which a Session or Session.as_default() context has been entered. NOTE: The default session is a property of the current thread. If you create a new thread, and wish to use the default session in that thread, you must explicitly add a with sess.as_default(): in that thread's function. Returns: The default Session being used in the current thread.

tf.contrib.learn.monitors.EveryN.post_step()

tf.contrib.learn.monitors.EveryN.post_step(step, session)

tf.contrib.distributions.ExponentialWithSoftplusLam.get_batch_shape()

tf.contrib.distributions.ExponentialWithSoftplusLam.get_batch_shape() Shape of a single sample from a single event index as a TensorShape. Same meaning as batch_shape. May be only partially defined. Returns: batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.InverseGamma.prob()

tf.contrib.distributions.InverseGamma.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mean()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mean(name='mean') Mean.

tf.contrib.graph_editor.OpMatcher.__init__()

tf.contrib.graph_editor.OpMatcher.__init__(positive_filter) Graph match constructor.

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.n

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.n

tf.contrib.framework.assign_from_values_fn()

tf.contrib.framework.assign_from_values_fn(var_names_to_values) Returns a function that assigns specific variables from the given values. This function provides a mechanism for performing assignment of variables to values in a way that does not fill the graph with large assignment values. Args: var_names_to_values: A map from variable names to values. Returns: A function that takes a single argument, a tf.Session, that applies the assignment operation. Raises: ValueError: if any of the giv

tf.contrib.distributions.NormalWithSoftplusSigma.is_continuous

tf.contrib.distributions.NormalWithSoftplusSigma.is_continuous

tf.WholeFileReader.serialize_state()

tf.WholeFileReader.serialize_state(name=None) Produce a string tensor that encodes the state of a reader. Not all Readers support being serialized, so this can produce an Unimplemented error. Args: name: A name for the operation (optional). Returns: A string Tensor.