tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.distribution

tf.contrib.framework.convert_to_tensor_or_sparse_tensor()

tf.contrib.framework.convert_to_tensor_or_sparse_tensor(value, dtype=None, name=None, as_ref=False) Converts value to a SparseTensor or Tensor. Args: value: A SparseTensor, SparseTensorValue, or an object whose type has a registered Tensor conversion function. dtype: Optional element type for the returned tensor. If missing, the type is inferred from the type of value. name: Optional name to use if a new Tensor is created. as_ref: True if we want the result as a ref tensor. Only used if a

tf.contrib.crf.crf_binary_score()

tf.contrib.crf.crf_binary_score(tag_indices, sequence_lengths, transition_params) Computes the binary scores of tag sequences. Args: tag_indices: A [batch_size, max_seq_len] matrix of tag indices. sequence_lengths: A [batch_size] vector of true sequence lengths. transition_params: A [num_tags, num_tags] matrix of binary potentials. Returns: binary_scores: A [batch_size] vector of binary scores.

tf.contrib.distributions.Mixture.sample_n()

tf.contrib.distributions.Mixture.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.distributions.BetaWithSoftplusAB.batch_shape()

tf.contrib.distributions.BetaWithSoftplusAB.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.distributions.Multinomial.sample_n()

tf.contrib.distributions.Multinomial.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.distributions.Normal.is_reparameterized

tf.contrib.distributions.Normal.is_reparameterized

tf.contrib.distributions.MultivariateNormalFull.__init__()

tf.contrib.distributions.MultivariateNormalFull.__init__(mu, sigma, validate_args=False, allow_nan_stats=True, name='MultivariateNormalFull') Multivariate Normal distributions on R^k. User must provide means mu and sigma, the mean and covariance. Args: mu: (N+1)-D floating point tensor with shape [N1,...,Nb, k], b >= 0. sigma: (N+2)-D Tensor with same dtype as mu and shape [N1,...,Nb, k, k]. Each batch member must be positive definite. validate_args: Boolean, default False. Whether to va

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.name

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.name Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Exponential.pmf()

tf.contrib.distributions.Exponential.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.