tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.dtype

tf.contrib.distributions.Uniform.log_pdf()

tf.contrib.distributions.Uniform.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tensorflow::TensorShapeUtils::StartsWith()

bool tensorflow::TensorShapeUtils::StartsWith(const TensorShape &shape0, const TensorShape &shape1)

tensorflow::TensorShape::operator=()

void tensorflow::TensorShape::operator=(const TensorShape &b)

tf.contrib.distributions.Uniform.pdf()

tf.contrib.distributions.Uniform.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.Uniform.log_cdf()

tf.contrib.distributions.Uniform.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape sample_shape(x) + self.

tf.contrib.distributions.Laplace.dtype

tf.contrib.distributions.Laplace.dtype The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Uniform.param_static_shapes()

tf.contrib.distributions.Uniform.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.QueueBase.name

tf.QueueBase.name The name of the underlying queue.

tf.contrib.distributions.DirichletMultinomial

class tf.contrib.distributions.DirichletMultinomial DirichletMultinomial mixture distribution. This distribution is parameterized by a vector alpha of concentration parameters for k classes and n, the counts per each class..