tf.sparse_reshape()

tf.sparse_reshape(sp_input, shape, name=None) Reshapes a SparseTensor to represent values in a new dense shape. This operation has the same semantics as reshape on the represented dense tensor. The indices of non-empty values in sp_input are recomputed based on the new dense shape, and a new SparseTensor is returned containing the new indices and new shape. The order of non-empty values in sp_input is unchanged. If one component of shape is the special value -1, the size of that dimension is c

tf.contrib.learn.TensorFlowRNNClassifier.__repr__()

tf.contrib.learn.TensorFlowRNNClassifier.__repr__()

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.loss(final_loss, name='Loss')

tf.contrib.rnn.CoupledInputForgetGateLSTMCell.output_size

tf.contrib.rnn.CoupledInputForgetGateLSTMCell.output_size

tf.errors.FailedPreconditionError.__init__()

tf.errors.FailedPreconditionError.__init__(node_def, op, message) Creates a FailedPreconditionError.

tf.errors.PermissionDeniedError

class tf.errors.PermissionDeniedError Raised when the caller does not have permission to run an operation. For example, running the tf.WholeFileReader.read() operation could raise PermissionDeniedError if it receives the name of a file for which the user does not have the read file permission.

tf.contrib.layers.convolution2d_in_plane()

tf.contrib.layers.convolution2d_in_plane(*args, **kwargs) Performs the same in-plane convolution to each channel independently. This is useful for performing various simple channel-independent convolution operations such as image gradients: image = tf.constant(..., shape=(16, 240, 320, 3)) vert_gradients = layers.conv2d_in_plane(image, kernel=[1, -1], kernel_size=[2, 1]) horz_gradients = layers.conv2d_in_plane(image, kernel=[1, -1], kernel_size=[1, 2]) Args: inputs: a 4-D tensor with dimensio

tf.errors.UnavailableError

class tf.errors.UnavailableError Raised when the runtime is currently unavailable. This exception is not currently used.

tf.nn.rnn_cell.InputProjectionWrapper.__call__()

tf.nn.rnn_cell.InputProjectionWrapper.__call__(inputs, state, scope=None) Run the input projection and then the cell.

tf.FixedLengthRecordReader.num_records_produced()

tf.FixedLengthRecordReader.num_records_produced(name=None) Returns the number of records this reader has produced. This is the same as the number of Read executions that have succeeded. Args: name: A name for the operation (optional). Returns: An int64 Tensor.