tf.errors.AlreadyExistsError

class tf.errors.AlreadyExistsError Raised when an entity that we attempted to create already exists. For example, running an operation that saves a file (e.g. tf.train.Saver.save()) could potentially raise this exception if an explicit filename for an existing file was passed.

tf.contrib.distributions.DirichletMultinomial.log_pdf()

tf.contrib.distributions.DirichletMultinomial.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.learn.LinearClassifier.get_estimator()

tf.contrib.learn.LinearClassifier.get_estimator()

tf.contrib.distributions.LaplaceWithSoftplusScale.scale

tf.contrib.distributions.LaplaceWithSoftplusScale.scale Distribution parameter for scale.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.mean(name='mean')

tf.SparseTensorValue

class tf.SparseTensorValue SparseTensorValue(indices, values, shape)

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.validate_args

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Categorical

class tf.contrib.distributions.Categorical Categorical distribution. The categorical distribution is parameterized by the log-probabilities of a set of classes.

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.entropy(name='entropy')

tf.errors.UnimplementedError

class tf.errors.UnimplementedError Raised when an operation has not been implemented. Some operations may raise this error when passed otherwise-valid arguments that it does not currently support. For example, running the tf.nn.max_pool() operation would raise this error if pooling was requested on the batch dimension, because this is not yet supported.