tf.contrib.distributions.Dirichlet.log_pmf()

tf.contrib.distributions.Dirichlet.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.graph_editor.SubGraphView.passthroughs

tf.contrib.graph_editor.SubGraphView.passthroughs The passthrough tensors, going straight from input to output.

tensorflow::Session::Run()

virtual Status tensorflow::Session::Run(const std::vector< std::pair< string, Tensor > > &inputs, const std::vector< string > &output_tensor_names, const std::vector< string > &target_node_names, std::vector< Tensor > *outputs)=0 Runs the graph with the provided input tensors and fills outputs for the endpoints specified in output_tensor_names. Runs to but does not return Tensors for the nodes in target_node_names. The order of tensors in outputs will

tf.nn.rnn_cell.BasicLSTMCell

class tf.nn.rnn_cell.BasicLSTMCell Basic LSTM recurrent network cell. The implementation is based on: http://arxiv.org/abs/1409.2329. We add forget_bias (default: 1) to the biases of the forget gate in order to reduce the scale of forgetting in the beginning of the training. It does not allow cell clipping, a projection layer, and does not use peep-hole connections: it is the basic baseline. For advanced models, please use the full LSTMCell that follows.

tensorflow::RandomAccessFile

A file abstraction for randomly reading the contents of a file. Member Details tensorflow::RandomAccessFile::RandomAccessFile() tensorflow::RandomAccessFile::~RandomAccessFile() virtual Status tensorflow::RandomAccessFile::Read(uint64 offset, size_t n, StringPiece *result, char *scratch) const =0 Reads up to n bytes from the file starting at offset. scratch[0..n-1] may be written by this routine. Sets *result to the data that was read (including if fewer than n bytes were successfully read). Ma

tf.contrib.distributions.BetaWithSoftplusAB.log_cdf()

tf.contrib.distributions.BetaWithSoftplusAB.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Additional documentation from Beta: Note that the argument x must be a non-negative floating point tensor whose shape can

tf.contrib.distributions.Gamma.prob()

tf.contrib.distributions.Gamma.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.learn.TensorFlowRNNClassifier.set_params()

tf.contrib.learn.TensorFlowRNNClassifier.set_params(**params) Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it's possible to update each component of a nested object. Args: **params: Parameters. Returns: self Raises: ValueError: If params contain invalid names.

tf.image.random_flip_up_down()

tf.image.random_flip_up_down(image, seed=None) Randomly flips an image vertically (upside down). With a 1 in 2 chance, outputs the contents of image flipped along the first dimension, which is height. Otherwise output the image as-is. Args: image: A 3-D tensor of shape [height, width, channels]. seed: A Python integer. Used to create a random seed. See set_random_seed for behavior. Returns: A 3-D tensor of the same type and shape as image. Raises: ValueError: if the shape of image not su

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.cdf()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.