tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.clone(name=None, **dist_args)

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.dtype

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.dtype The DType of Tensors handled by this Distribution.

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.name

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.name

tf.contrib.distributions.BetaWithSoftplusAB.log_pmf()

tf.contrib.distributions.BetaWithSoftplusAB.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tensorflow::TensorShapeUtils::IsVector()

static bool tensorflow::TensorShapeUtils::IsVector(const TensorShape &shape)

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.clone(name=None, **dist_args)

tf.contrib.distributions.BernoulliWithSigmoidP.survival_function()

tf.contrib.distributions.BernoulliWithSigmoidP.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.rnn.GridLSTMCell.output_size

tf.contrib.rnn.GridLSTMCell.output_size

tf.contrib.distributions.Gamma.parameters

tf.contrib.distributions.Gamma.parameters Dictionary of parameters used by this Distribution.

tf.Session.graph

tf.Session.graph The graph that was launched in this session.