tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.distribution

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.pdf()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.loss(final_loss, name='Loss')

tf.matrix_diag()

tf.matrix_diag(diagonal, name=None) Returns a batched diagonal tensor with a given batched diagonal values. Given a diagonal, this operation returns a tensor with the diagonal and everything else padded with zeros. The diagonal is computed as follows: Assume diagonal has k dimensions [I, J, K, ..., N], then the output is a tensor of rank k+1 with dimensions [I, J, K, ..., N, N]` where: output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]. For example: # 'diagonal' is [[1, 2, 3, 4],

tensorflow::Tensor::FromProto()

bool tensorflow::Tensor::FromProto(const TensorProto &other) TF_MUST_USE_RESULT Parse other and construct the tensor. Returns true iff the parsing succeeds. If the parsing fails, the state of *this is unchanged.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_prob()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.batch_shape()

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.distributions.Gamma.pmf()

tf.contrib.distributions.Gamma.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.rnn.CoupledInputForgetGateLSTMCell.__init__()

tf.contrib.rnn.CoupledInputForgetGateLSTMCell.__init__(num_units, use_peepholes=False, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=False, activation=tanh) Initialize the parameters for an LSTM cell. Args: num_units: int, The number of units in the LSTM cell use_peepholes: bool, set True to enable diagonal/peephole connections. initializer: (optional) The initializer to use for the weight and projection matrices. num

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.distribution