tf.QueueBase.size()

tf.QueueBase.size(name=None) Compute the number of elements in this queue. Args: name: A name for the operation (optional). Returns: A scalar tensor containing the number of elements in this queue.

tf.contrib.training.SequenceQueueingStateSaver

class tf.contrib.training.SequenceQueueingStateSaver SequenceQueueingStateSaver provides access to stateful values from input. This class is meant to be used instead of, e.g., a Queue, for splitting variable-length sequence inputs into segments of sequences with fixed length and batching them into mini-batches. It maintains contexts and state for a sequence across the segments. It can be used in conjunction with a QueueRunner (see the example below). The SequenceQueueingStateSaver (SQSS) accep

tf.contrib.graph_editor.SubGraphView.__bool__()

tf.contrib.graph_editor.SubGraphView.__bool__() Allows for implicit boolean conversion.

tf.contrib.distributions.Categorical.param_shapes()

tf.contrib.distributions.Categorical.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tensorflow::PartialTensorShape::IsCompatibleWith()

bool tensorflow::PartialTensorShape::IsCompatibleWith(const PartialTensorShape &shape) const Return true iff the ranks match, and if the dimensions all either match or one is unknown.

tf.contrib.graph_editor.matcher.control_input_ops()

tf.contrib.graph_editor.matcher.control_input_ops(*args) Add input matches.

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.dtype

tf.contrib.distributions.Binomial.name

tf.contrib.distributions.Binomial.name Name prepended to all ops created by this Distribution.

tf.contrib.distributions.TransformedDistribution.log_pdf()

tf.contrib.distributions.TransformedDistribution.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.errors.CancelledError.__init__()

tf.errors.CancelledError.__init__(node_def, op, message) Creates a CancelledError.