tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.__init__()

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)

tf.contrib.distributions.Poisson.sample()

tf.contrib.distributions.Poisson.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.name

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.name Name prepended to all ops created by this Distribution.

tensorflow::EnvWrapper::GetFileSystemForFile()

Status tensorflow::EnvWrapper::GetFileSystemForFile(const string &fname, FileSystem **result) override Returns the FileSystem object to handle operations on the file specified by 'fname'. The FileSystem object is used as the implementation for the file system related (non-virtual) functions that follow. Returned FileSystem object is still owned by the Env object and will.

tf.contrib.losses.get_regularization_losses()

tf.contrib.losses.get_regularization_losses(scope=None) Gets the regularization losses. Args: scope: an optional scope for filtering the losses to return. Returns: A list of loss variables.

tf.contrib.distributions.WishartFull.name

tf.contrib.distributions.WishartFull.name Name prepended to all ops created by this Distribution.

tf.contrib.distributions.TransformedDistribution.base_distribution

tf.contrib.distributions.TransformedDistribution.base_distribution Base distribution, p(x).

tf.contrib.distributions.Normal.entropy()

tf.contrib.distributions.Normal.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.name

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.name

tf.contrib.distributions.DirichletMultinomial.pdf()

tf.contrib.distributions.DirichletMultinomial.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.