tensorflow::EnvWrapper::RegisterFileSystem()

Status tensorflow::EnvWrapper::RegisterFileSystem(const string &scheme, FileSystemRegistry::Factory factory) override

tf.contrib.distributions.StudentT.log_prob()

tf.contrib.distributions.StudentT.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.value()

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.value(name='value')

tf.contrib.distributions.Categorical.allow_nan_stats

tf.contrib.distributions.Categorical.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.mean(name='mean')

tf.contrib.distributions.InverseGamma.get_batch_shape()

tf.contrib.distributions.InverseGamma.get_batch_shape() Shape of a single sample from a single event index as a TensorShape. Same meaning as batch_shape. May be only partially defined. Returns: batch_shape: TensorShape, possibly unknown.

tf.SparseTensor.graph

tf.SparseTensor.graph The Graph that contains the index, value, and shape tensors.

tf.contrib.distributions.Multinomial.get_batch_shape()

tf.contrib.distributions.Multinomial.get_batch_shape() Shape of a single sample from a single event index as a TensorShape. Same meaning as batch_shape. May be only partially defined. Returns: batch_shape: TensorShape, possibly unknown.

tf.nn.rnn_cell.OutputProjectionWrapper.__init__()

tf.nn.rnn_cell.OutputProjectionWrapper.__init__(cell, output_size) Create a cell with output projection. Args: cell: an RNNCell, a projection to output_size is added to it. output_size: integer, the size of the output after projection. Raises: TypeError: if cell is not an RNNCell. ValueError: if output_size is not positive.