tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.input_dict

tf.contrib.distributions.Mixture.is_continuous

tf.contrib.distributions.Mixture.is_continuous

tf.contrib.distributions.Bernoulli.get_event_shape()

tf.contrib.distributions.Bernoulli.get_event_shape() Shape of a single sample from a single batch as a TensorShape. Same meaning as event_shape. May be only partially defined. Returns: event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Bernoulli.batch_shape()

tf.contrib.distributions.Bernoulli.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.distributions.BetaWithSoftplusAB.variance()

tf.contrib.distributions.BetaWithSoftplusAB.variance(name='variance') Variance.

tf.contrib.distributions.BetaWithSoftplusAB.cdf()

tf.contrib.distributions.BetaWithSoftplusAB.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mu

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mu

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.NormalTensor.mean(name='mean')

tf.contrib.distributions.Gamma.beta

tf.contrib.distributions.Gamma.beta Inverse scale parameter.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.pdf()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.