tf.contrib.distributions.ExponentialWithSoftplusLam.get_batch_shape()

tf.contrib.distributions.ExponentialWithSoftplusLam.get_batch_shape() Shape of a single sample from a single event index as a TensorShape. Same meaning as batch_shape. May be only partially defined. Returns: batch_shape: TensorShape, possibly unknown.

tf.contrib.distributions.InverseGamma.prob()

tf.contrib.distributions.InverseGamma.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tensorflow::Tensor::tensor_data()

StringPiece tensorflow::Tensor::tensor_data() const Returns a StringPiece mapping the current tensor's buffer. The returned StringPiece may point to memory location on devices that the CPU cannot address directly. NOTE: The underlying tensor buffer is refcounted, so the lifetime of the contents mapped by the StringPiece matches the lifetime of the buffer; callers should arrange to make sure the buffer does not get destroyed while the StringPiece is still used. REQUIRES: DataTypeCanUseMemcpy(dt

tf.SparseTensor.__truediv__()

tf.SparseTensor.__truediv__(sp_x, y) Internal helper function for 'sp_t / dense_t'.

tf.contrib.distributions.Categorical.mode()

tf.contrib.distributions.Categorical.mode(name='mode') Mode.

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.name

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.name

tensorflow::Tensor::bit_casted_shaped()

TTypes< T, NDIMS >::Tensor tensorflow::Tensor::bit_casted_shaped(gtl::ArraySlice< int64 > new_sizes) Return the tensor data to an Eigen::Tensor with the new shape specified in new_sizes and cast to a new dtype T. Using a bitcast is useful for move and copy operations. The allowed bitcast is the only difference from shaped().

tensorflow::PartialTensorShape::IsFullyDefined()

bool tensorflow::PartialTensorShape::IsFullyDefined() const Return true iff the rank and all of the dimensions are well defined.

tf.contrib.distributions.WishartCholesky.scale()

tf.contrib.distributions.WishartCholesky.scale() Wishart distribution scale matrix.

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.name

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.name