tf.contrib.distributions.LaplaceWithSoftplusScale.pdf()

tf.contrib.distributions.LaplaceWithSoftplusScale.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.crf.crf_sequence_score()

tf.contrib.crf.crf_sequence_score(inputs, tag_indices, sequence_lengths, transition_params) Computes the unnormalized score for a tag sequence. Args: inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials to use as input to the CRF layer. tag_indices: A [batch_size, max_seq_len] matrix of tag indices for which we compute the unnormalized score. sequence_lengths: A [batch_size] vector of true sequence lengths. transition_params: A [num_tags, num_tags] transition matrix.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.validate_args

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.errors.PermissionDeniedError.__init__()

tf.errors.PermissionDeniedError.__init__(node_def, op, message) Creates a PermissionDeniedError.

tf.FIFOQueue

class tf.FIFOQueue A queue implementation that dequeues elements in first-in first-out order. See tf.QueueBase for a description of the methods on this class.

tf.contrib.distributions.Normal.variance()

tf.contrib.distributions.Normal.variance(name='variance') Variance.

tf.contrib.distributions.Uniform.allow_nan_stats

tf.contrib.distributions.Uniform.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is u

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.pmf()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.graph

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.graph

tf.contrib.distributions.LaplaceWithSoftplusScale.name

tf.contrib.distributions.LaplaceWithSoftplusScale.name Name prepended to all ops created by this Distribution.