tf.contrib.distributions.Normal.log_prob()

tf.contrib.distributions.Normal.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.Distribution.event_shape()

tf.contrib.distributions.Distribution.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.entropy()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.distributions.InverseGamma.event_shape()

tf.contrib.distributions.InverseGamma.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.rnn.CoupledInputForgetGateLSTMCell

class tf.contrib.rnn.CoupledInputForgetGateLSTMCell Long short-term memory unit (LSTM) recurrent network cell. The default non-peephole implementation is based on: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf S. Hochreiter and J. Schmidhuber. "Long Short-Term Memory". Neural Computation, 9(8):1735-1780, 1997. The peephole implementation is based on: https://research.google.com/pubs/archive/43905.pdf Hasim Sak, Andrew Senior, and Francoise Beaufays. "Long short-term memory recurren

tf.contrib.distributions.MultivariateNormalDiag.pmf()

tf.contrib.distributions.MultivariateNormalDiag.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.Normal.pmf()

tf.contrib.distributions.Normal.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor

class tf.contrib.bayesflow.stochastic_tensor.BinomialTensor BinomialTensor is a StochasticTensor backed by the distribution Binomial.

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.entropy(name='entropy')

tf.contrib.distributions.MultivariateNormalFull.param_static_shapes()

tf.contrib.distributions.MultivariateNormalFull.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.