tf.SparseTensor.__truediv__()

tf.SparseTensor.__truediv__(sp_x, y) Internal helper function for 'sp_t / dense_t'.

tf.contrib.distributions.Categorical.mode()

tf.contrib.distributions.Categorical.mode(name='mode') Mode.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.mu

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.mu Locations of these Student's t distribution(s).

tf.contrib.graph_editor.OpMatcher.__init__()

tf.contrib.graph_editor.OpMatcher.__init__(positive_filter) Graph match constructor.

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.n

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.n

tf.WholeFileReader.serialize_state()

tf.WholeFileReader.serialize_state(name=None) Produce a string tensor that encodes the state of a reader. Not all Readers support being serialized, so this can produce an Unimplemented error. Args: name: A name for the operation (optional). Returns: A string Tensor.

tensorflow::PartialTensorShape::dim_size()

int64 tensorflow::PartialTensorShape::dim_size(int d) const Returns the number of elements in dimension d. REQUIRES: 0 <= d < dims()

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.loss(final_loss, name='Loss')

tf.FixedLenSequenceFeature

class tf.FixedLenSequenceFeature Configuration for a dense input feature in a sequence item. To treat a sparse input as dense, provide allow_missing=True; otherwise, the parse functions will fail on any examples missing this feature. Fields: shape: Shape of input data. dtype: Data type of input. allow_missing: Whether to allow this feature to be missing from a feature list item.

tf.contrib.distributions.MultivariateNormalDiag.entropy()

tf.contrib.distributions.MultivariateNormalDiag.entropy(name='entropy') Shanon entropy in nats.