tf.contrib.distributions.Mixture.cdf()

tf.contrib.distributions.Mixture.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiag.mu

tf.contrib.distributions.MultivariateNormalDiag.mu

tf.contrib.distributions.InverseGamma.sample_n()

tf.contrib.distributions.InverseGamma.sample_n(n, seed=None, name='sample_n') Generate n samples. Additional documentation from InverseGamma: See the documentation for tf.random_gamma for more details. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.learn.monitors.CaptureVariable.every_n_step_end()

tf.contrib.learn.monitors.CaptureVariable.every_n_step_end(step, outputs)

tf.contrib.distributions.Chi2WithAbsDf.batch_shape()

tf.contrib.distributions.Chi2WithAbsDf.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.input_dict

tf.contrib.layers.repeat()

tf.contrib.layers.repeat(inputs, repetitions, layer, *args, **kwargs) Applies the same layer with the same arguments repeatedly. y = repeat(x, 3, conv2d, 64, [3, 3], scope='conv1') # It is equivalent to: x = conv2d(x, 64, [3, 3], scope='conv1/conv1_1') x = conv2d(x, 64, [3, 3], scope='conv1/conv1_2') y = conv2d(x, 64, [3, 3], scope='conv1/conv1_3') If the scope argument is not given in kwargs, it is set to layer.__name__, or layer.func.__name__ (for functools.partial objects). If neither __n

tf.contrib.losses.sum_of_pairwise_squares()

tf.contrib.losses.sum_of_pairwise_squares(*args, **kwargs) Adds a pairwise-errors-squared loss to the training procedure. (deprecated) THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-01. Instructions for updating: Use mean_pairwise_squared_error. Unlike the sum_of_squares loss, which is a measure of the differences between corresponding elements of predictions and targets, sum_of_pairwise_squares is a measure of the differences between pairs of corresponding elements of predictio

tf.contrib.distributions.Multinomial.name

tf.contrib.distributions.Multinomial.name Name prepended to all ops created by this Distribution.

tf.contrib.distributions.Mixture.log_survival_function()

tf.contrib.distributions.Mixture.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: float or double Ten