tf.contrib.distributions.MultivariateNormalDiag.param_shapes()

tf.contrib.distributions.MultivariateNormalDiag.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalDiag.name

tf.contrib.distributions.MultivariateNormalDiag.name Name prepended to all ops created by this Distribution.

tf.contrib.distributions.MultivariateNormalDiag.parameters

tf.contrib.distributions.MultivariateNormalDiag.parameters Dictionary of parameters used by this Distribution.

tf.contrib.distributions.MultivariateNormalDiag.mu

tf.contrib.distributions.MultivariateNormalDiag.mu

tf.contrib.distributions.MultivariateNormalDiag.mean()

tf.contrib.distributions.MultivariateNormalDiag.mean(name='mean') Mean.

tf.contrib.distributions.MultivariateNormalDiag.mode()

tf.contrib.distributions.MultivariateNormalDiag.mode(name='mode') Mode.

tf.contrib.distributions.MultivariateNormalDiag.log_survival_function()

tf.contrib.distributions.MultivariateNormalDiag.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: floa

tf.contrib.distributions.MultivariateNormalDiag.log_prob()

tf.contrib.distributions.MultivariateNormalDiag.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Additional documentation from _MultivariateNormalOperatorPD: x is a batch vector with compatible shape if x is a Tensor whose shape can be broadcast up to either: self.batch_shape + self.event_shape or [M1,...,Mm] + self.batch_shape + self.event_shape Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a

tf.contrib.distributions.MultivariateNormalDiag.log_sigma_det()

tf.contrib.distributions.MultivariateNormalDiag.log_sigma_det(name='log_sigma_det') Log of determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalDiag.log_pmf()

tf.contrib.distributions.MultivariateNormalDiag.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.