tf.contrib.distributions.Bernoulli.survival_function()

tf.contrib.distributions.Bernoulli.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.NormalWithSoftplusSigma.log_prob()

tf.contrib.distributions.NormalWithSoftplusSigma.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiag.log_survival_function()

tf.contrib.distributions.MultivariateNormalDiag.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: floa

tensorflow::Thread::~Thread()

tensorflow::Thread::Thread()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.dtype

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.dtype The DType of Tensors handled by this Distribution.

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.clone(name=None, **dist_args)

tf.contrib.distributions.WishartCholesky.allow_nan_stats

tf.contrib.distributions.WishartCholesky.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df

tf.contrib.distributions.LaplaceWithSoftplusScale.log_pmf()

tf.contrib.distributions.LaplaceWithSoftplusScale.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.allow_nan_stats

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Stud

tf.contrib.distributions.TransformedDistribution.log_pmf()

tf.contrib.distributions.TransformedDistribution.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.