tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.param_static_shapes()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.WholeFileReader.num_records_produced()

tf.WholeFileReader.num_records_produced(name=None) Returns the number of records this reader has produced. This is the same as the number of Read executions that have succeeded. Args: name: A name for the operation (optional). Returns: An int64 Tensor.

tf.ReaderBase.num_work_units_completed()

tf.ReaderBase.num_work_units_completed(name=None) Returns the number of work units this reader has finished processing. Args: name: A name for the operation (optional). Returns: An int64 Tensor.

tf.IdentityReader.num_work_units_completed()

tf.IdentityReader.num_work_units_completed(name=None) Returns the number of work units this reader has finished processing. Args: name: A name for the operation (optional). Returns: An int64 Tensor.

tf.ReaderBase.num_records_produced()

tf.ReaderBase.num_records_produced(name=None) Returns the number of records this reader has produced. This is the same as the number of Read executions that have succeeded. Args: name: A name for the operation (optional). Returns: An int64 Tensor.

tf.contrib.distributions.Bernoulli.event_shape()

tf.contrib.distributions.Bernoulli.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.allow_nan_stats

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean

tf.contrib.distributions.Multinomial.param_shapes()

tf.contrib.distributions.Multinomial.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor

class tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor BernoulliWithSigmoidPTensor is a StochasticTensor backed by the distribution BernoulliWithSigmoidP.

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.entropy(name='entropy')