tf.sparse_to_indicator(sp_input, vocab_size, name=None)
Converts a SparseTensor of ids into a dense bool indicator tensor.
The last dimension of sp_input.indices is discarded and replaced with the values of sp_input. If sp_input.shape = [D0, D1, ..., Dn, K], then output.shape = [D0, D1, ..., Dn, vocab_size], where
output[d_0, d_1, ..., d_n, sp_input[d_0, d_1, ..., d_n, k]] = True
and False elsewhere in output.
For example, if sp_input.shape = [2, 3, 4] with non-empty values:
[0, 0, 0]: 0 [0, 1, 0]: 10 [1, 0, 3]: 103 [1, 1, 2]: 150 [1, 1, 3]: 149 [1, 1, 4]: 150 [1, 2, 1]: 121
and vocab_size = 200, then the output will be a [2, 3, 200] dense bool tensor with False everywhere except at positions
(0, 0, 0), (0, 1, 10), (1, 0, 103), (1, 1, 149), (1, 1, 150), (1, 2, 121).
Note that repeats are allowed in the input SparseTensor. This op is useful for converting SparseTensors into dense formats for compatibility with ops that expect dense tensors.
The input SparseTensor must be in row-major order.
Args:
-
sp_input: ASparseTensorwithvaluesproperty of typeint32orint64. -
vocab_size: A scalar int64 Tensor (or Python int) containing the new size of the last dimension,all(0 <= sp_input.values < vocab_size). -
name: A name prefix for the returned tensors (optional)
Returns:
A dense bool indicator tensor representing the indices with specified value.
Raises:
-
TypeError: Ifsp_inputis not aSparseTensor.
Please login to continue.