tf.contrib.distributions.QuantizedDistribution.survival_function()

tf.contrib.distributions.QuantizedDistribution.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Additional documentation from QuantizedDistribution: For whole numbers y, survival_function(y) := P[Y > y] = 0, if y >= upper_cutoff, = 1, if y < lower_cutoff

tf.contrib.distributions.ExponentialWithSoftplusLam.param_shapes()

tf.contrib.distributions.ExponentialWithSoftplusLam.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.distributions.Mixture.param_shapes()

tf.contrib.distributions.Mixture.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.learn.monitors.GraphDump.set_estimator()

tf.contrib.learn.monitors.GraphDump.set_estimator(estimator) A setter called automatically by the target estimator. If the estimator is locked, this method does nothing. Args: estimator: the estimator that this monitor monitors. Raises: ValueError: if the estimator is None.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.param_shapes()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.loss(final_loss, name='Loss')

tf.contrib.distributions.ExponentialWithSoftplusLam.survival_function()

tf.contrib.distributions.ExponentialWithSoftplusLam.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.sample_n()

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.sample_n(n, seed=None, name='sample_n') Generate n samples. Additional documentation from InverseGamma: See the documentation for tf.random_gamma for more details. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.distributions.Distribution.batch_shape()

tf.contrib.distributions.Distribution.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.learn.read_batch_examples()

tf.contrib.learn.read_batch_examples(file_pattern, batch_size, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, num_threads=1, read_batch_size=1, parse_fn=None, name=None) Adds operations to read, queue, batch Example protos. Given file pattern (or list of files), will setup a queue for file names, read Example proto using provided reader, use batch queue to create batches of examples of size batch_size. All queue runners are added to the queue runners collection, and may b