tf.contrib.distributions.Distribution.sample_n()

tf.contrib.distributions.Distribution.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.parameters

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.parameters Dictionary of parameters used by this Distribution.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_survival_function()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value:

tf.contrib.distributions.Categorical.sample()

tf.contrib.distributions.Categorical.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.WishartFull.sample_n()

tf.contrib.distributions.WishartFull.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.distributions.Chi2WithAbsDf.batch_shape()

tf.contrib.distributions.Chi2WithAbsDf.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.distributions.Chi2WithAbsDf.log_survival_function()

tf.contrib.distributions.Chi2WithAbsDf.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: float or doub

tensorflow::PartialTensorShape::AsProto()

void tensorflow::PartialTensorShape::AsProto(TensorShapeProto *proto) const Fill *proto from *this.

tf.contrib.graph_editor.reroute_a2b_ts()

tf.contrib.graph_editor.reroute_a2b_ts(ts0, ts1, can_modify=None, cannot_modify=None) For each tensor's pair, replace the end of t1 by the end of t0. B0 B1 B0 B1 | | => |/ A0 A1 A0 A1 The end of the tensors in ts1 are left dangling. Args: ts0: an object convertible to a list of tf.Tensor. ts1: an object convertible to a list of tf.Tensor. can_modify: iterable of operations which can be modified. Any operation outside within_ops will be left untouched by this function. cannot_modify: ite

tf.contrib.distributions.Distribution.log_pdf()

tf.contrib.distributions.Distribution.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.