tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.clone(name=None, **dist_args)

tf.contrib.distributions.Beta.sample_n()

tf.contrib.distributions.Beta.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.learn.BaseEstimator.fit()

tf.contrib.learn.BaseEstimator.fit(x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None) See Trainable. Raises: ValueError: If x or y are not None while input_fn is not None. ValueError: If both steps and max_steps are not None.

tf.contrib.learn.monitors.PrintTensor.epoch_begin()

tf.contrib.learn.monitors.PrintTensor.epoch_begin(epoch) Begin epoch. Args: epoch: int, the epoch number. Raises: ValueError: if we've already begun an epoch, or epoch < 0.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.__init__()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)

tf.FixedLenSequenceFeature.dtype

tf.FixedLenSequenceFeature.dtype Alias for field number 1

tf.contrib.learn.TensorFlowRNNClassifier.model_dir

tf.contrib.learn.TensorFlowRNNClassifier.model_dir

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.mean(name='mean')

tensorflow::Env::DeleteDir()

Status tensorflow::Env::DeleteDir(const string &dirname) Deletes the specified directory.

tf.contrib.distributions.Distribution.validate_args

tf.contrib.distributions.Distribution.validate_args Python boolean indicated possibly expensive checks are enabled.