tf.contrib.distributions.QuantizedDistribution.mean()

tf.contrib.distributions.QuantizedDistribution.mean(name='mean') Mean.

tf.contrib.distributions.TransformedDistribution.is_continuous

tf.contrib.distributions.TransformedDistribution.is_continuous

tf.contrib.distributions.Poisson.log_pdf()

tf.contrib.distributions.Poisson.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.Laplace.name

tf.contrib.distributions.Laplace.name Name prepended to all ops created by this Distribution.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.validate_args

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.SparseTensorValue

class tf.SparseTensorValue SparseTensorValue(indices, values, shape)

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.entropy(name='entropy')

tensorflow::Session::Close()

virtual Status tensorflow::Session::Close(const RunOptions &run_options)

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.stop_gradient

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.stop_gradient

tf.VarLenFeature

class tf.VarLenFeature Configuration for parsing a variable-length input feature. Fields: dtype: Data type of input.