tf.contrib.distributions.DirichletMultinomial.__init__(n, alpha, validate_args=False, allow_nan_stats=True, name='DirichletMultinomial')
Initialize a batch of DirichletMultinomial distributions.
Args:
- 
n: Non-negative floating point tensor, whose dtype is the same asalpha. The shape is broadcastable to[N1,..., Nm]withm >= 0. Defines this as a batch ofN1 x ... x Nmdifferent Dirichlet multinomial distributions. Its components should be equal to integer values. - 
alpha: Positive floating point tensor, whose dtype is the same asnwith shape broadcastable to[N1,..., Nm, k]m >= 0. Defines this as a batch ofN1 x ... x Nmdifferentkclass Dirichlet multinomial distributions. - 
validate_args:Boolean, defaultFalse. Whether to assert valid values for parametersalphaandn, andxinprobandlog_prob. IfFalse, correct behavior is not guaranteed. - 
allow_nan_stats:Boolean, defaultTrue. IfFalse, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. IfTrue, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. name: The name to prefix Ops created by this distribution class.Examples:
# Define 1-batch of 2-class Dirichlet multinomial distribution, # also known as a beta-binomial. dist = DirichletMultinomial(2.0, [1.1, 2.0]) # Define a 2-batch of 3-class distributions. dist = DirichletMultinomial([3., 4], [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
Please login to continue.