tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.value()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.value(name='value')

tf.contrib.bayesflow.stochastic_tensor.SampleValue.popped_above()

tf.contrib.bayesflow.stochastic_tensor.SampleValue.popped_above(unused_value_type)

tf.contrib.distributions.StudentT.log_prob()

tf.contrib.distributions.StudentT.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tensorflow::EnvWrapper::RegisterFileSystem()

Status tensorflow::EnvWrapper::RegisterFileSystem(const string &scheme, FileSystemRegistry::Factory factory) override

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.value()

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.value(name='value')

tf.contrib.distributions.Categorical.allow_nan_stats

tf.contrib.distributions.Categorical.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.mean(name='mean')

tensorflow::TensorShape::DebugString()

string tensorflow::TensorShape::DebugString() const For error messages.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.value()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.value(name='value')