tf.contrib.distributions.Poisson.lam

tf.contrib.distributions.Poisson.lam Rate parameter.

tf.contrib.learn.monitors.StopAtStep.run_on_all_workers

tf.contrib.learn.monitors.StopAtStep.run_on_all_workers

tf.contrib.distributions.Chi2WithAbsDf.mean()

tf.contrib.distributions.Chi2WithAbsDf.mean(name='mean') Mean.

tf.nn.rnn_cell.LSTMStateTuple.__new__()

tf.nn.rnn_cell.LSTMStateTuple.__new__(_cls, c, h) Create new instance of LSTMStateTuple(c, h)

tf.contrib.learn.monitors.LoggingTrainable.every_n_post_step()

tf.contrib.learn.monitors.LoggingTrainable.every_n_post_step(step, session) Callback after a step is finished or end() is called. Args: step: int, the current value of the global step. session: Session object.

tf.contrib.learn.monitors.LoggingTrainable

class tf.contrib.learn.monitors.LoggingTrainable Writes trainable variable values into log every N steps. Write the tensors in trainable variables every_n steps, starting with the first_nth step.

tf.contrib.distributions.BetaWithSoftplusAB.validate_args

tf.contrib.distributions.BetaWithSoftplusAB.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.__init__()

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)

tf.contrib.distributions.BernoulliWithSigmoidP.event_shape()

tf.contrib.distributions.BernoulliWithSigmoidP.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.distributions.Chi2WithAbsDf.validate_args

tf.contrib.distributions.Chi2WithAbsDf.validate_args Python boolean indicated possibly expensive checks are enabled.