tf.contrib.graph_editor.ControlOutputs.update()

tf.contrib.graph_editor.ControlOutputs.update() Update the control outputs if the graph has changed.

tf.contrib.bayesflow.stochastic_tensor.SampleValue.declare_inputs()

tf.contrib.bayesflow.stochastic_tensor.SampleValue.declare_inputs(unused_stochastic_tensor, unused_inputs_dict)

tf.contrib.graph_editor.OpMatcher.output_ops()

tf.contrib.graph_editor.OpMatcher.output_ops(*args) Add output matches.

tf.contrib.graph_editor.OpMatcher.control_input_ops()

tf.contrib.graph_editor.OpMatcher.control_input_ops(*args) Add input matches.

tf.contrib.distributions.WishartCholesky.mode()

tf.contrib.distributions.WishartCholesky.mode(name='mode') Mode.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.clone(name=None, **dist_args)

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.value_type

tf.contrib.distributions.WishartFull.mean_log_det()

tf.contrib.distributions.WishartFull.mean_log_det(name='mean_log_det') Computes E[log(det(X))] under this Wishart distribution.