tf.contrib.distributions.StudentT.variance()

tf.contrib.distributions.StudentT.variance(name='variance') Variance. Additional documentation from StudentT: The variance for Student's T equals df / (df - 2), when df > 2 infinity, when 1 < df <= 2 NaN, when df <= 1

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_prob()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Additional documentation from _MultivariateNormalOperatorPD: x is a batch vector with compatible shape if x is a Tensor whose shape can be broadcast up to either: self.batch_shape + self.event_shape or [M1,...,Mm] + self.batch_shape + self.event_shape Args: value: float or double Tensor. name: The name to give this op. Retur

tf.contrib.distributions.BetaWithSoftplusAB.get_event_shape()

tf.contrib.distributions.BetaWithSoftplusAB.get_event_shape() Shape of a single sample from a single batch as a TensorShape. Same meaning as event_shape. May be only partially defined. Returns: event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Poisson.sample_n()

tf.contrib.distributions.Poisson.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.distributions.Multinomial.dtype

tf.contrib.distributions.Multinomial.dtype The DType of Tensors handled by this Distribution.

tf.contrib.rnn.GRUBlockCell.__call__()

tf.contrib.rnn.GRUBlockCell.__call__(x, h_prev, scope=None) GRU cell.

tf.contrib.distributions.Dirichlet.mode()

tf.contrib.distributions.Dirichlet.mode(name='mode') Mode. Additional documentation from Dirichlet: Note that the mode for the Dirichlet distribution is only defined when alpha > 1. This returns the mode when alpha > 1, and NaN otherwise. If self.allow_nan_stats is False, an exception will be raised rather than returning NaN.

tf.contrib.distributions.QuantizedDistribution.log_survival_function()

tf.contrib.distributions.QuantizedDistribution.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Additional document

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.param_static_shapes()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.param_shapes()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.