tf.contrib.distributions.GammaWithSoftplusAlphaBeta.pmf()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_cdf()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape samp

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.survival_function()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.MultivariateNormalDiag.mean()

tf.contrib.distributions.MultivariateNormalDiag.mean(name='mean') Mean.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.mode()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.mode(name='mode') Mode. Additional documentation from Gamma: The mode of a gamma distribution is (alpha - 1) / beta when alpha > 1, and NaN otherwise. If self.allow_nan_stats is False, an exception will be raised rather than returning NaN.

tensorflow::Tensor::tensor()

TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::tensor() const

tf.contrib.distributions.BetaWithSoftplusAB.sample_n()

tf.contrib.distributions.BetaWithSoftplusAB.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.mean()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.mean(name='mean') Mean. Additional documentation from StudentT: The mean of Student's T equals mu if df > 1, otherwise it is NaN. If self.allow_nan_stats=True, then an exception will be raised rather than returning NaN.

tf.contrib.learn.TensorFlowEstimator.get_variable_names()

tf.contrib.learn.TensorFlowEstimator.get_variable_names() Returns list of all variable names in this model. Returns: List of names.

tf.contrib.distributions.MultivariateNormalCholesky.prob()

tf.contrib.distributions.MultivariateNormalCholesky.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Additional documentation from _MultivariateNormalOperatorPD: x is a batch vector with compatible shape if x is a Tensor whose shape can be broadcast up to either: self.batch_shape + self.event_shape or [M1,...,Mm] + self.batch_shape + self.event_shape Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of sh